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ABSTRACT

The scaling argument developed by the authors in a previous work for eddy amplitudes and fluxes in a
horizontally homogeneous, two-layer model on an f plane is extended to a § plane. In terms of the nondimen-
sional number ¢ = U/(B\?), where \ is the deformation radius and U is the mean thermal wind, the result for
the rms eddy velocity V, the characteristic wavenumber of the energy-containing eddies and of the eddy-driven
jets k;, and the magnitude of the eddy diffusivity for potential vorticity D, in the limit £ > 1, are as follows:

VIUsE, ka=E™', DI(UN) = €2
Numerical simulations provide qualitative support for this scaling but suggest that it underestimates the sensi-

tivity of these eddy statistics to the value of £&. A generalization that is applicable to continuous stratification is
suggested that leads to the estimates

Vs (BT, k=~ BT, D=~(FT)",

where T is a timescale determined by the environment; in particular, it equals A\U™' in the two-layer model and
N(f8.U)™" in a continuous flow with uniform shear and stratification. This same scaling has also been suggested
as relevant to a continuously stratified fluid in the opposite limit, £ < 1. Therefore, the authors suggest that it
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may be of general relevance in planetary atmospheres and in the oceans.

1. Introduction

An understanding of the mechanisms that control the
amplitudes of baroclinic eddies and their transport
properties is basic to developing theories for the gen-
eral circulation of planetary atmospheres and oceans
and for incorporating the effects of mesoscale eddies
in large-scale ocean models. Different classes of ide-
alized models are needed to improve our understanding
of various aspects of this problem. We focus on one
such class—models of horizontally homogeneous
quasigeostrophic (QG) turbulence, with imposed
large-scale potential vorticity gradients. These models
are useful in bridging the gap between studies of ho-
mogeneous two-dimensional turbulence and studies of
baroclinic eddy fluxes in inhomogeneous flows of
physical interest. Analyses of these baroclinic homo-
geneous models, and work on closely related problems,
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can be found in Rhines (1977), Salmon (1978, 1980),
Haidvogel and Held (1980), Vallis (1983), Hoyer and
Sadourny (1982), Panetta (1993), and Held and
O’Brien (1992).

Recently, Larichev and Held (1995, LH hereafter)
have considered the statistically steady state of a two-
layer model on an f plane, with an imposed environ-
mental vertical shear, or interface slope, that results in
equal and opposite potential vorticity gradients in the
two layers. Following the lead of Rhines, Salmon, and
Hoyer and Sadourny, they describe a picture of the
barotropic and baroclinic energy cascades that leads to
simple scaling arguments for the energy level and po-
tential vorticity fluxes in this baroclinically unstable
system, given the scale to which the inverse energy
cascade extends.

On a f plane, the barotropic inverse energy cascade
is halted when the characteristic overturning time for
the energy-containing eddies becomes comparable to
the inverse of the Rossby wave frequency (Rhines
1975), at which scale the energy is channeled into
zonal jets. In a baroclinically unstable flow, these jets
also organize the instability, so that the eddies form a
‘‘storm track’’ on each jet, as described by Williams
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(1979) and Panetta (1993). By combining the scaling
argument of LH with the Rhines scale at which the
inverse cascade halts, we obtain a qualitative theory for
the eddy amplitudes and fluxes on a § plane. We dis-
cuss the results for the two-layer model, describe some
numerical solutions that provide partial support for the
theory but also point to some deficiencies, and then
indicate how the argument generalizes to continuous
stratification and arbitrary vertical structure in the mean
flow.

2. The two-layer model

We consider a two-layer QG model with equal-depth
layers when at rest. The barotropic and baroclinic
streamfunctions are denoted by ¢ = (¢, + 1,)/2 and
T = (¥, — P2)/2, where the subscripts 1 and 2 refer
to the upper and lower layers, respectively. The cor-
responding barotropic and baroclinic velocities are re-
ferred to as (uy, v,) and (u,, v,). The mean flows in
the two layers U; = const are specified to provide a
vertical shear of

U= (U - U,)/2 >0, @))
which results in the mean potential vorticity gradients
B = U2 = UN2(£7' = 1), where \ is the internal
radius of deformation and where

£ =U/I(BN). (2)

The plus sign refers to the upper layer, and the minus
sign to the lower layer. The lower-layer potential vor-
ticity (PV) gradient is reversed if the shear is large
enough that £ > 1, which is the criterion for instability
in an inviscid flow.

The argument in LH for the f plane can be refor-
mulated as follows. Start by assuming that the kinetic
energy of the flow is predominately barotropic on
scales much larger than the internal radius of defor-
mation \. On these scales the barotropic mode evolves
as in a two-dimensional flow, cascading energy to
larger scales. Assume that this inverse energy cascade
halts on average at the wavenumber k,. Given the Kol-
mogorov energy spectrum of k™>'*, or any spectrum
steeper than &~', the bulk of the energy will be con-
tained on the scale k. The baroclinic potential vorticity
is advected by this nearly barotropic flow on large
scales. Since it does not induce a significant part of the
flow by which it is advected, the baroclinic potential
vorticity will behave as a passive tracer and will be
mixed downgradient by the ‘‘turbulent diffusion’” en-
gendered by the barotropic flow. This mixing will be
dominated by the largest scales in the flow. Since the
magnitude of the ambient potential vorticity gradient is
UX2, the typical size of the eddy baroclinic potential
vorticity will be

q' ~ks'(UNT?) 3)
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so that
v'q’ ~ —D(U\?) 4
with
D~ Vk;', (5)

where V is the rms barotropic velocity and D is the
diffusivity. Thus, (3) is equivalent to the statement that
the baroclinic velocities on the energy-containing scale
(vl =~ ko\?q") are of the order of U.

The baroclinic potential vorticity, acting as a passive
scalar, will cascade to smaller scales. On scales larger
than \, the variance of this potential vorticity is domi-
nated by thickness fluctuations and is therefore pro-
portional to the potential energy in the baroclinic mode.
The rate of eddy energy production per unit mass in a
horizontally homogeneous two-layer model is

e=—(Upviqi + Uwujiq3)/2

= Uy IN? = Vg '(U/N)2. (6)
In this homogeneous model, the potential vorticity
fluxes in the two layers are equal and opposite and pro-
portional to the thickness flux.

The baroclinic eddy energy is produced on the larg-
est scale kg, since it is proportional to the potential
vorticity flux. It then cascades down to the deformation
radius. Energy cannot cascade farther since the layers
decouple at smaller scales, leaving 2D flow in which
energy cannot proceed downscale; instead, it is con-
verted to barotropic energy, in which form it cascades
back upscale, eventually to be dissipated.

The barotropic energy level is determined by the re-
quirement that at equilibrium the rate at which energy
flow to larger scales in the barotropic mode is equal to
the baroclinic energy production. If the energy cascade
extends to the scale k, and the rms barotropic velocity
is V, then by dimensional analysis

€ ~ V3k0, (7)

an expression familiar from 3D turbulence (e.g., Ten-
nekes and Lumley 1972). It is equivalent to the as-
sumption utilized by LH that an inertial range exists.
From (6) and (7), one finds

V & (ko\)~'U. (8)
The barotropic velocities are larger than the mean shear
by the factor (koA) ~'. We have assumed that this factor
is much greater than unity so as to have a significant
inverse energy cascade. Barotropic velocities are also
larger than baroclinic velocities on the scale k, by the
same factor, so the dominance of advection by the baro-
tropic flow on large scales is assured. The correspond-
ing diffusivity is of the magnitude

D ~ (ko\)~'Uky". 9)
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We also have the result that the eddy available potential
energy is proportional to the barotropic kinetic energy:

1_2 U2

Fz(k—o)\)—imvé-'-ui. (10)
The argument above is equivalent to that provided by LH.

In the basic f-plane numerical experiment analyzed
in LH, k;' is determined by the size of the domain. On
a $ plane, we expect the inverse cascade to stop at the
Rhines scale, at which rms barotropic velocities V are

comparable to Rossby wave phase speeds:
ko? = VIB. (11)

We ignore the anisotropy of the dispersion relation in
this scaling. By combining (7) and (11), one obtains
the expression for k, in terms of energy cascade rate
discussed by Pelinovskiy (1978) or Vallis and Maltrud
(1991): ko == (B*/€) ">, (If the lower boundary is not
flat, one should replace 8 by the effective g felt by the
barotropic mode in the presence of large-scale bottom
relief, H|V (f/H)|). As the cascade is halted, the baro-
tropic energy is organized into jets of this meridional
scale. Panetta (1993) has shown that this relation ac-
counts quite well for the number of jets produced in a
model of homogeneous geostrophic turbulence in the
presence of a mean shear, if V is set equal to the square
root of the total kinetic energy (see his Fig. 4).

Our assumption that (ko\)~' > 1 translates into the
statement that £ > 1. We assume that the presence of
[ does not modify the previous scalings when £ is large.
Combining (8) and (11), we have

VIU =~ ¢ (12)
and
koh =~ €7 (13)
with the consequence that
D ~ UNE2. (14)

Since D is proportional to U*, the potential vorticity
flux is proportional to U*, while the energy generation
is proportional to U°.

3. Some numerical results

These scaling relations can be tested against numer-
ical experiments such as those described by Haidvogel
and Held (1980) and Panetta (1992), for two-layer,
QG homogeneous turbulence on a B plane with im-
posed mean vertical shear. Figure 18 in Panetta (1993)
shows that the scale with the maximum energy and the
scale of maximum energy generation are both approx-
imately linear in £, consistent with (13). [In the nota-
tion of Panetta, £ = (283)7"'.] The predicted eddy am-
plitudes and fluxes are not that well. verified, however.
The eddy energy should be proportional to £2. The re-
sults tabulated by Panetta suggest that the energies and
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fluxes are even more sensitive to £. To confirm this
result, we have obtained numerical solutions to the
same model as considered by Haidvogel and Held
(1980) and Panetta (1993) but with 256 X 256 reso-
lution that allows more scale separation between the
radius of deformation and the energy-containing eddy
scale.

The numerical model is identical to that used in the
f-plane simulations of LH. We choose a value of the
lower-layer Ekman damping, k = 0.16(U/\), that is
identical to that in LH and set the deformation radius
so that 2w\ = L/50, where L is the size of the square
doubly periodic domain. Small-scale damping is
modeled with a vV?® diffusion operator, with v
= 0.08(U\"). Statistically steady states have been ob-
tained for the values of £ shown in Table 1. Instability
actually persists for values of ¢ slightly less than 1, due
to dissipative destabilization, but these are not dis-
played in the table.

Figure 1 shows the horizontal spectra of the baro-
tropic component of the meridional velocity and of the
baroclinic eddy energy generation (or equivalently, of
the potential vorticity flux in either layer, or of the
buoyancy flux ) for each of the statistically steady states
obtained. The spectra are plotted as a function of total
horizontal wavenumber, after averaging over angle in
k space. The energy generation clearly moves to larger
scales when the energy is allowed to cascade to larger
scales. Also shown by arrows is the Rhines scale (11),
computed using the rms barotropic meridional velocity
for V, for each value of £. This prediction of the scale
is seen to be in reasonable agreement with the scale of
the maxima in energy and energy generation, for large
values of £ down to £ = 2.

As Fig. 2 shows, the energies and the energy gen-
eration increase more rapidly with increasing £ than
predicted by our scaling arguments. Instead of the ex-
pected £2 power law, we obtain a dependence that is
between £ and £*. This result confirms the impression
obtained from Panetta’s results. We cannot rule out the
possibility that even the largest values of £ are not yet
large enough to attain the asymptotic regime predicted,
but this appears to be unlikely since there is no trend

TaBLE 1. Statistics from the numerical model as a function of £:
€4iss 18 the dissipation of energy in the barotropic mode by Ekman
friction; k, is computed from (11) using the rms meridional velocity
of the barotropic mode for V.

£ vU? vy el(U'\™") Eaissl€ (ko)™
8 488 0.92 104 0.74 13.3
6 175 0.88 384 0.70 8.91
4 38.6 0.76 8.70 0.69 5.00
3 127 0.62 3.01 0.69 3.27
2 2.85 0.48 0.717 0.69 1.84
10/7 0.77 0.40 0.211 0.64 1.12
10/9 0.28 033 0.085 0.58 0.77
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FiG. 1. The horizontal spectra of (a) the barotropic meridional ve-
locity and (b) the baroclinic eddy energy production rate, for different
£ at equilibrium. The arrows indicate the Rhines scale computed from
(11) using the rms barotropic meridional velocity for V.

in the results that suggests that the £* behavior is being
approached. (The comparison with theory is also made
more complicated by the fact that the size of the domain
is beginning to make itself felt at the largest value of ¢
used.) This discrepancy is also seen in the f-plane re-
sults in LH, in which the scale of the energy generation
was arbitrarily constrained.

To examine the sources of this discrepancy, it is con-
venient to define

ke = (BIV)'2, (15)
ky = Ve '(UIN)?, (16)

and
k= elV?. (17)

We set V equal to the rms meridional velocity in the
barotropic mode. The preceeding scaling argument
then follows from the assumption that k; =~ ky =~ kg.
The nondimensional length scales (k\) ™' correspond-
ing to these three characteristic wavenumbers are plot-
ted in Fig. 3 as a function of . For clarity, the effective
mixing scale (k') and the scale related to the inverse
cascade (k') have been multiplied by constants so that
they equal the Rhines scale (kz') at £ = 4.

At first glance, the assumption that these scales are
proportional appears to be a useful first approximation,
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SUPERCRITICALITY

FIG. 2. A log—log plot of v}?, twice the meridional barotropic en-
ergy (solid line), and e, the baroclinic eddy energy production rate
(dashed line), as functions of the supercriticality £. Also shown are
slopes consistent with £* and ¢* dependencies.

but it is these differences that account for the inaccu-
racy of our scaling argument. The Rhines scale is found
to increase less rapidly with supercriticality than the
other two scales. A log—log plot of the ratios suggests
the crude scalings

kelky = €1/ (18)
kelky =~ €73, (19)

From the definitions (15)—(17), one has the exact re-
lations

(VIU)? = €2(kalk)* (kal k)2, (20)
(o) ™" = EChellg) Uil k)2, (21)
= (Kl el k). (22)

(U*IN)

The estimates (18)—(19) then yield (V/U)? =~ £*7 and
e/(UNT") ~ £3%, as well as (ky\) ™! = €175, (k) ™!
~ £, and (kg\) ' = ¢'4. These are all roughly con-
sistent with the results in Figs. 2 and 3.

Errors that appear to be small in the individual ap-
proximations combine to create a large discrepancy in
the final dependence of energy on £. The underlying
reason for this sensitivity is the strong posiiive feed-

SCALES
g

SUPERCRITICALITY

FiG. 3. The length scales (kg\)™' (solid line), (ky\) ™' (dashed line),
and (kz\)~' (dotted line), as defined in (15)—(17), plotted as a func-
tion of supercriticality £.
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back inherent in the system: as the energy level in-
creases, the length scale of the energy-containing ed-
dies increases, which increases the mixing length and
V, increasing the energy generation.

The biggest discrepancy in scales is between kg and
kr. One can reduce this difference if one uses the total
(zonal plus meridional ) rms eddy velocity for Vin (17)
while retaining the use of the meridional velocity vari-
ance in (15). This choice is admittedly somewhat ar-
bitrary but it does indicate that changes in the degree
of anisotropy (see the ratio of rms eddy u, and v, in
the table), which we have ignored in our simple scal-
ing, could play a role in the discrepancy in Fig. 3.

In our scaling argument, we have assumed that the
energy dissipation due to Ekman damping at large
scales in the barotropic mode is equal, or at least pro-
portional, to the eddy energy production. But as indi-
cated in the table, this is not strictly true, since the frac-
tional energy lost due to subgrid diffusivity and the
Ekman damping of baroclinic energy is a function of
supercriticality. The dissipation in the barotropic mode
is a better estimate of the rate at which energy is cas-
cading to larger scales. If one substitutes this rate for e
in (17), the discrepancy between kg and k; is reduced
somewhat but only at small supercriticality. Although
we have compromised our resolution at small scales in
order to provide room for a substantial inverse cascade,
we feel that it is unlikely that a model with better res-
olution of the direct enstrophy cascade and weaker dif-
fusion would produce qualitatively different results.

The relevance of the classic picture of a self-similar
inverse energy cascade when 8 = 0 has been ques-
tioned, owing to the formation of coherent vortices, and
it has been found that the inverse energy cascade can
produce spectra much steeper than —5/3 in a very large
domain (Borue 1994 and references therein). Our
guess is that an important part of the discrepancy be-
tween our scaling and the numerical model is a result
of a naive treatment of this barotropic dynamics.

Although our qualitative arguments clearly require
some modification in order to fit numerical results, we
feel that they are a useful starting point and therefore
have examined how they might be generalized to hor-
izontally homogeneous flows with arbitrary stratifica-
tion and mean vertical shears.

4. Continuous stratification

Consider a Boussinesq QG flow with stratification
N?(z) and mean flow U(z), confined between flat hor-
izontal boundaries at z = 0, H. The energy production
per unit mass € can be written in the form

H 117
S A zb ou dz.
0 N 82

=H (23)

Here, v'bd’ is the meridional buoyancy flux, related to
the potential vorticity flux by
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Vg = fONB). (24)

Consistent with our assumption of horizontal homo-
geneity, the relative vorticity flux, which equals the
convergence of the eddy momentum fluxes, is ignored.
The mean wind shear is related to the mean buoyancy
gradient by

foU = -9,B. (25)

We assume again that the inverse cascade is sub-
stantial enough that the flow advecting the potential
vorticity can be taken as barotropic. The downgradient
fluxes can then be set equal to a diffusivity D times the
negative of the mean gradient, with the diffusivity in-
dependent of z. In this case of a vertically uniform dif-
fusivity, the same diffusivity can be applied to buoy-
ancy and to potential vorticity. The result is

e =DT™2, (26)
where
H 2 6U 2
T = “f L (Y d
H 0 N? ( 0z ) <
H
=H"f2f Ri~'dz. 27)
4]

For the two-layer model of section 2, T = N/ U, where
U = (U, — U,)/2, from which we can rederive the
two-layer scaling. For a continuous flow with N and
0,U constants, we have T = N(fo,U)"' = f~' Ri'"2.
In both cases, T is proportional to the e-folding time
for baroclinic waves in the limit that the effect of 8 is
small. We again assume that the diffusivity D is related
to the energy-containing scale k, and the barotropic
velocity scale V, as in (5), and that the energy produc-
tion must balance the upscale transport of energy by
the barotropic flow (7), so that

€ =Vko'T* = Vik,, (28)

or simply,
T = 1/(koV). (29)

Thus, in addition to being the timescale associated with
the linear dynamics of deformation scale eddies, T is
also the timescale of the energy-containing eddies on
much larger scales. Combined with the estimate of k,
as the Rhines scale (11), we have

ko = BT, (30)
V = 1/(BT?), (31)
D = 1/(B°T?). (32)

5. Relationship to more weakly unstable flows

The preceding analysis is intended for the asymptotic
limit of small 3, in which there is an inverse energy
cascade over a substantial range of scales. It is in this
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limit that the flow responsible for diffusing the potential
vorticity is primarily barotropic, so that we can remove
the diffusivity D from the integral in the expression for
the energy generation (21). In the two-layer model,
these scaling relations cannot remain qualitatively valid
for all &, since the flow is stable once £ drops below a
critical value (although it is impressive how well the
two-layer results in Fig. 2 are approximated by a power
law even as £ approaches unity). However, these ex-
pressions may retain their relevance over the full range
of £ in certain continuous flows. Held (1978) suggests
scaling arguments for Charney-like continuous models
in the limit that #/H < 1, where H is the depth of the
fluid, or the scale height in the non-Boussinesq case,
while

f2o,U
BN
In this limit the vertical scale of the most unstable

waves in Charney’s model is proportional to k and their
horizontal scale to

h=

(33)

fo.U _

Nh/f BN 1/(BT),
where we have used the expression (25) for 7. This is
identical to the scaling in (28). If these scales dominate
the statistically steady state, surface buoyancy pertur-
bations will be of magnitude b’ =~ (Nh/f)0,B, or, us-
ing equipartition of eddy kinetic and available potential
energies,

V=b'IN=~hoU=~ B '(fO,UN), (35)

which is identical to (29). The result is again a diffu-
sivity proportional to the cube of the vertical shear.

In Held (1978), this scaling was assumed to break
down as h/H becomes comparable to unity. Following
Stone (1972), it was assumed that the dominant hori-
zontal scale relevant for the eddy transports would then
be NH/f = \ and the characteristic velocity Ho,U,
leading to a diffusivity that is proportional to the first
power of the vertical shear. The argument of LH sug-
gests instead that once h/H (=¢) rises above unity the
inverse energy cascade sets in and the appropriate eddy
scale and mixing length continue to increase in pro-
portion to £. With this picture in mind, one can imagine
that the scalings (28)—(30) are relevant for the full
range of &.

In the weakly unstable case one cannot assume that
the diffusivity is independent of height. In fact, if h/H
< 1, the mixing should be confined to a depth propor-
tional to 4 (Held 1978) in a Charney-like environment.
More generally, a theory for the vertical structure of
the diffusivity is required as one moves away from the
strongly unstable limit.

(34)

6. Final remarks

The qualitative theory presented for the eddy ampli-
tudes and scales in horizontally homogeneous, baro-
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clinically unstable flows can be most simply described
by the statement that the environmental shear and strat-
ification determine a timescale T, which can be com-
bined with 8 to determine a length (8T) ', a velocity
(BT*)™', and a diffusivity (4°T*)"" in only one way.
The remainder of the argument provides the rationale
for thinking that the shear and stratification provides a
timescale only, in the limit in which the flow is ener-
getic enough that there exists a substantial inverse en-
ergy cascade. The result coincides in form to that pro-
posed by Held (1978) for a Charney-like environment,
in the opposite limit in which the eddies are very weak.
This leads us to suggest that these scalings may in fact
be useful for a wide range of energy levels in certain
flows, although we do not understand if there are fun-
damental reasons why this should be so.

In practice, one must keep in mind that there may be
insufficient room for 8 to halt the cascade, in which case
the eddy scale is determined by the domain size or the
size of the baroclinic region. This leads to the diffusivity
proposed by Green (1970), as described by LH.

Several limitations to these arguments are evident.
Even in the limit of very strong supercriticality in the
two layer model, there is only partial agreement with
numerical simulations. Our scaling arguments suggest
that an accurate theory for eddy amplitudes and fluxes
will be difficult to obtain because of the delicate bal-
ance resulting from a positive feedback in which po-
tential vorticity fluxes increase as eddy velocity and
length scales increase, leading to higher energy levels
and a stronger inverse energy cascade, leading, in turn,
to an increase in eddy velocity and length scales.

Even if the limitations of the asymptotic theory are
ignored, one still needs a theory for the vertical struc-
ture of the diffusivity, or of the eddy PV fluxes, when
the inverse energy cascade is not so strong as to gen-
erate a nearly barotropic eddy velocity field. These ar-
guments also do not tell us how to treat the dependence
of eddy statistics on the strength of the surface drag.
Also, the bottom topography so far ignored in the anal-
ysis may strongly effect the cascades, rendering the
flows more baroclinic (Rhines 1977; Cox 1985; Tre-
guier and Hua 1988).

The final and most fundamental limitation relates to
the assumption of horizontal homogeneity. For exam-
ple, if the barotropic decay is due to momentum fluxes
in the presence of a mean horizontal shear, and if this
horizontal shear is imposed by other constraints rather
than being internally generated by the eddies them-
selves, then the dependence of the length and velocity
scales on environmental parameters would clearly be
changed. However, the recent study of Pavan and Held
(1996) suggests that diffusivities obtained from a ho-
mogeneous model can be surprisingly useful for jetlike
flows with substantial horizontal shears.

Despite these limitations and misgivings, we believe
that these scaling arguments provide a useful back-
ground for developing closure schemes for simple dif-
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fusive atmospheric models as well as for non-eddy-
resolving ocean models.
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